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Abstract In this study, the prediction of wintertime extratropical cyclone activity from subseasonal to
seasonal timescale in current dynamical models' reforecasts is investigated. On seasonal time scales, the
North American Multi‐Model Ensemble (NMME) models show skillful predictions over the eastern North
Pacific, North America and the western North Atlantic with at least 5 months lead. The prediction skill is
highly related to El Nino‐Southern Oscillation (ENSO), as using the ENSO‐related SST pattern gives
rise to prediction skill with very similar spatial pattern and amplitude. On subseasonal time scales, models in
the Seasonal to Sub‐seasonal Prediction (S2S) dataset have skillful predictions up to 4 weeks lead over
regions from the eastern North Pacific to the western Atlantic, as well as northern Europe, the eastern
Atlantic and East Asia. Generally, forecast skill improves with a larger ensemble size. The subseasonal
prediction skill from the Pacific to the western Atlantic is related to ENSO, and that over eastern Atlantic,
Europe and East Asia are associated with stratospheric polar vortex anomalies. Current models do not
show much skill from the Madden‐Julian Oscillation (MJO), as the MJO impact on extratropical cyclone
activity is not well captured by the models. European Centre for Medium‐Range Weather Forecasts
(ECMWF) model has the highest single model subseasonal prediction skill. The prediction skill in the
ECMWFmodel is higher than its estimated potential predictability, likely because the signal‐to‐noise ratio is
too low in the model hindcasts.

1. Introduction

Extratropical cyclones can often give rise to high‐impact weather such as heavy precipitation, strong wind,
storm surge and severe snowfall. Thus, they have large impact on regional weather and climate, as well as
the economy and human life. Predicting extratropical cyclone activity (ECA) from days to seasons and pro-
jecting the future changes of ECA are of great scientific interest and can be beneficial to the society.

Current dynamical models have skillful predictions of individual extratropical cyclones with a few days of
lead time. As it is difficult to predict midlatitude instantaneous weather out to a few weeks (e.g. Zhang
et al., 2019), the aggregate paths of extratropical cyclones, also referred to as extratropical storm tracks,
can be a useful substitute for one to predict ECA on timescales longer than a few weeks. The ECA (or storm
track activity), can be represented not only by cyclone tracks (e.g. Klein, 1957), but also by statistics on
gridded atmospheric data, such as the variance in a frequency band of synoptic timescales (e.g. Blackmon,
1976; Chang et al., 2012; Lau, 1978). In this study, we will focus on wintertime Northern Hemisphere
ECA based on variance statistics.

The observational, theoretical, and modeling aspects of the ECA have been extensively studied in the litera-
ture (see the review papers by Chang et al., 2002; Shaw et al., 2016). ECA varies on multiple time scales
(Chang et al., 2002; Chang et al., 2013; Stockdale et al., 2010; Chang & Fu, 2002). On interannual time scales,
the El Niño–Southern Oscillation (ENSO) has significant modulation on Northern Hemisphere ECA
(Eichler & Higgins, 2006; Ma & Chang, 2017; Straus & Shukla, 1997; Zhang & Held, 1999). El Niño events
drive an equatorward and downstream shift of the Pacific storm track and weakening of North America
ECA, while La Niña events drive opposite changes. Recent studies showed that the quasi‐biennial oscillation
(QBO) can also modulate Northern Hemisphere ECA (Wang, Kim, & Chang, 2018) over both the Pacific and
the Atlantic, but the impacts are mostly in the upper troposphere. The QBO can also modulate the MJO
impact on Pacific ECA (Wang, Kim, Chang, & Son, 2018; see discussion below for MJO impact on ECA).
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Predictability of seasonal ECA has been studied by Yang et al. (2015) using a Geophysical Fluid Dynamics
Laboratory (GFDL) climate model. The leading predictable ECA pattern in Northern Hemisphere winter
was found to be ENSO‐related and is predictable up to 9 months in advance.

On subseasonal time scale, recent studies have shown that several phenomena, including ENSO, the polar
vortex, the Madden Julian Oscillation (MJO), and the QBO, can provide sources for atmospheric predictabil-
ity (e.g. Black et al., 2017; DelSole et al., 2017; Garfinkel et al., 2018; Tian et al., 2017; Xiang et al., 2019). The
MJO causes a north‐south shift of ECA over North America when the MJO associated tropical diabatic heat-
ing is in different locations (Zheng et al., 2018). The MJO also modifies ECA over North Pacific and North
Atlantic (Deng & Jiang, 2011; Guo et al., 2017; Lee & Lim, 2012; Zheng et al., 2018). In addition, the polar
vortex in the Northern Hemisphere stratosphere can also modulate the ECA (Kidston et al., 2015; Scaife
et al., 2012). Stratospheric wind anomalies can modify the midlatitude jet through the “downward control”
mechanism (Haynes et al., 1991). Stronger or weaker zonal flow generally leads to enhanced or suppressed
ECA. Walter and Graf (2005) showed that stratosphere anomalous patterns modify ECA over the
North Atlantic.

In this study, we will explore the prediction of ECA on seasonal time scale (up to 5 months) by using the
North American Multi‐Model Ensemble (NMME; Kirtman et al., 2014), and on subseasonal time scale
(i.e., 1‐4 weeks) by using the Seasonal to Sub‐seasonal Prediction (S2S; Vitart et al., 2017) dataset. In
section 2, we will introduce the datasets, as well as how ECA is defined and evaluated in the models.
Seasonal and monthly prediction of ECA will be discussed by using NMME and statistical model in
section 3. Subseasonal prediction skill of ECA in the S2S dataset will be shown in section 4. Discussions
related to the source of subseasonal prediction skill and potential predictability will be provided in
section 5. Conclusions and implications of this study will be discussed in section 6.

2. Data and Methods
2.1. Data
2.1.1. NMME and S2S models
Phase 2 of the NMME (Kirtman et al., 2014) comprises of seasonal forecasts and hindcasts made by 8models,
providing daily data for a number of atmospheric variables. Seven of the eight models (except for NCEP
CFSv2) provide forecasts initialized at 00Z in the first day of each month. Because the GFDL models do
not provide MSLP data (the variable we use to quantify storm track activity – see Section 2.2.1 below), while
the NCAR CESM does not initialize the atmosphere with a current atmospheric analysis, in this study we
examine hindcasts from four models – Environment Canada CanCM3 and CanCM4, NASA Goddard
Space Flight Center (GSFC) GEOS5, and NCAR/University of Miami CCSM4.0. Each of these models pro-
vide a ten‐member ensemble, with a common hindcast period of 1982 to 2012. Here, we focus on
Northern Hemisphere (NH) winter (December to February; DJF) since storm tracks are most active in this
season. Because there are some missing data for the 1998/99 winter season, this season is omitted from our
analysis. Thus, we have examined hindcasts from 29 winter seasons or 87 winter months. Apart from daily
MSLP data, we have also examined monthly mean SST hindcasts. Since NMME data are scheduled to be
delivered by the modeling centers to the Climate Prediction Center (CPC) by the 8th of each month, the
lead‐zero forecasts (i.e. DJF or December forecasts made on December 1st) will only be available more than
one week after the predicted period has begun. Thus lead 0 hindcast skills are examinedmainly for reference
and for the sake of completeness.

The S2S database consists of 11 coupled or uncoupled models including near‐real‐time ensemble forecasts
and reforecasts up to 60 days. Since the S2S database is not produced by following an agreed upon protocol,
there are significant differences among S2S models (e.g. resolution, forecast time range, frequency of initia-
lizing forecasts, ensemble sizes). Reforecasts of 6 models are used (see Table 1 and Text S1). MSLP data on a
1.5° by 1.5° horizontal resolution grid are available at 00 UTC at each forecast day from these 6 models. To
investigate model performance in the upper level, 500‐hPa geopotential height (Z500) data are
also examined.
2.1.2. Reanalysis and other datasets
For verification, ECA is calculated by using the 6‐hourly MSLP data on a 1.5° by 1.5° horizontal resolution
grid from ECMWF Interim Re‐Analysis (ERA‐Interim, Dee et al., 2011). As only daily mean MSLP is
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available from NMME models, daily mean MSLP of ERA‐Interim is obtained by averaging 6‐hourly MSLP
data. 6‐hourly geopotential height data on the same temporal and spatial resolution is also obtained from
ERA‐Interim. To be consistent with S2S dataset, only the data at 00 UTC in ERA‐Interim is used to verify
S2S models.

In addition, to evaluate whether themodel prediction skill is associated with phenomena like ENSO,MJO or
polar vortex, datasets which quantify these phenomena are also used in the study. We use the Nino 3.4 index
to define the phase of ENSO. The Nino 3.4 index, which is obtained fromNational Oceanic and Atmospheric
Administration (NOAA) Earth System Research Laboratory (ESRL) website, is calculated based Hadley
Centre's sea ice and sea surface temperature (SST) data set (HadISST1; Rayner et al., 2003). For the MJO,
we make use of the real‐time multivariate (RMM, Wheeler & Hendon, 2004) index, which is the commonly
used index for evaluating MJO forecasts (e.g. Kim et al., 2018). The RMM index, obtained from Bureau of
Meteorology (BoM) website, is developed based on multivariate empirical orthogonal function (EOF) analy-
sis of combined fields of outgoing longwave radiation (OLR), 850 and 200‐hPa zonal wind anomalies. The
Polar vortex index (PVI; similar to Xiang et al., 2019) is defined by averaging the zonal wind anomaly north
of 60°N at 100‐hPa in ERA‐Interim.

2.2. Methods
2.2.1. Definition of ECA
To quantify ECA, a 24‐h difference filter introduced by Wallace et al. (1988) is applied on the MSLP data,

pp ¼ MSLP t þ 24hrð Þ–MSLP tð Þf g2 ; (1)

pp, which is mean square of the 24‐h difference of MSLP, is used to define ECA. In equation (1), the 24‐h
difference is calculated at each time step and on each grid point. Daily mean MSLP is used in the equation
for NMMEmodels, while MSLP at 00 UTC is used for S2Smodels. In many previous studies, this averaging is
performed over a continuous time period. Here we will also examine seasonal, monthly, and weekly means.
However, when verifying whether the prediction skill of ECA is associated with the MJO, we apply a similar
approach as Guo et al. (2017) and Zheng et al. (2018), in which the averaging time period is not continuous.
As shown by many previous studies (e.g., Chang et al., 2002; Wallace et al., 1988), the maxima from this 24‐h
difference filter lie over geographical locations where extratropical cyclones preferentially cross (see also
Figure 1a). Variations in pp will serve as an indicator of variability of ECA. The winter climatology (DJF),
and variability (standard deviation) on weekly, biweekly (week 3‐4 prediction skill is evaluated in this study)
and monthly time scale of ECA, are shown in Figure 1. The maxima in this metric clearly highlight the

Table 1
Description of the 6 models in S2S dataset that are used in this study.

Model
Time
range Resolution

Reforecast
frequency

Reforecast
period

Reforecast
Sizes

Ocean
coupling

Sea ice
coupling

CMA Day 0‐60 T106 L40 daily 1994‐2014 4 Yes Yes
China Meteorological Administration
CNR‐ISAC Day 0‐32 0.75x0.56 L54 every 5 days 1981‐2010 5 No No
Institute of Atmospheric Sciences and Climate
of the National Research Council (Model
Version Date 2017/06/08)

CNRM Day 0‐61 T255 L91 4 times a month 1993‐2014 15 Yes Yes
Météo‐France/Centre National de
Recherche Meteorologiques

ECCC Day 0‐32 0.45x0.45 L40 weekly 1995‐2014 4 No No
Environment and Climate Change Canada
Model Version: GEM Jan‐2016
ECMWF Day L91 twice a week 1997‐2016 11 Yes Yes
European Centre for Medium‐Range
Weather Forecasts

Model Version: CY43R3
HMCR Day 0‐61 1.1x1.4 L28 weekly 1985‐2010 10 No No
Hydrometeorological Centre of Russia
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Pacific storm track spreading eastward across North America into the Atlantic and finally northeastward
into northern Europe and Siberia (Figure 1a), which follows the direction of the mean flow. These are also
the regions where storm track activity is most variable at all time scales (Figure 1b‐d). Note that previous stu-
dies have shown that monthly and seasonal variability in this metric is well correlated with variability in pre-
cipitation and weather extremes (e.g. Chang et al., 2015; Yang et al., 2015; Ma & Chang, 2017).
2.2.2. Climatology and Anomalies of ECA in Model Forecasts
For sub‐seasonal to seasonal range forecasts, the model bias can become dominant. For each individual S2S
model and NMMEmodel, during the reforecast period, the reforecasts are initialized at the same dates in the
year. Thus, a model climatology, which depends on the model initialization time as well as forecast day (e.g.
forecast day 1, forecast day 2 …) is needed to correct the model bias. For an individual S2S model, all the

Figure 1. a) Climatology of the Northern Hemisphere extratropical cyclone activity (ECA) for 1979‐2017 winters (December‐February) based on all ERA‐interim
reanalysis 00z mean sea level pressure (MSLP) data. b) Standard deviation of 7‐day running mean ECA. c) Standard deviation of 14‐day running mean ECA. d)
Standard deviation of monthly ECA. Units in hPa2.
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reforecast of ECA at each grid point can be written as, ppmodel(y, dy,n, fd), where y is year, dy is initialization
day, fd is the forecast lead day. n = 1,…,N, where N is the total number of ensemble members in a single
model. A proper model climatology, which depends on both reforecast initialization time and forecast
day, can be obtained by averaging over all the years and all the ensemble members,

ppcli dy; f d
� � ¼

∑
y
∑
n
ppmodel y; dy;n; f d

� �
N×Y

; (2)

where Y is the total number of years. Then, model anomaly can be defined as the deviation from model
climatology,

ppano y; dy;n; f d
� � ¼ ppmodel y; dy;n; f d

� �
−ppcli dy; f d

� �
: (3)

The climatology and anomalies of ECA in NMME and Reanalysis can be defined by using a similar way,
except that the Reanalysis climatology does not depend on forecast day and there is only one ensemble mem-
ber when defining Reanalysis climatology.
2.2.3. Combining Different Models into a Multi‐model Ensemble
Previous studies have shown that multi‐model ensembles (MME) usually outperform single model ensem-
bles (e.g. Becker et al., 2014; Hagedorn et al., 2005; Smith et al., 2013). It is rather straightforward to combine
the NMME models into an MME as they are all initialized at the same time (first day of each month).
However, as the S2S models reforecast are initialized on different dates, the S2S models cannot be directly
combined into an MME. We have developed a way to combine the models with the following steps: (1)
During the winter seasons in the overlapping period of the 6 S2S models (DJF from 1997/98 to 2009/10),
for each day and each model, the gap between this day and the nearest reforecast that is initialized earlier
than this day is defined as the lead of the reforecast (Figure S12) (2) For any day in this period, we select days
that the lead of all the 6 models is less than or equal to 4 days (yellow shadings in Figure S12b). (3) If con-
secutive days satisfy the requirement, only the earliest day is selected (to make the lead smallest) and defined
as Day0 (red boxes in Figure S12b). Then, the 6models are combined into anMME for all the days which can
be defined as Day0. Day0 is considered as the “forecast day 0” for the MME. Day 0‐6, 7‐13, 14‐20 and 21‐27
after Day0 are considered as week1, week2, week3 and week4 respectively in the following discussions.
During DJF from 1997/98 to 2009/10, there are 156 days that can be considered as Day0 (about 12 cases
per winter season, which on average is about once a week).
2.2.4. Prediction Skill, Potential Predictability and Model Evaluation
The prediction skill and potential predictability of NMME and S2S models are assessed primarily by using
the anomaly correlation coefficient (ACC). The ACCmeasures the association between the anomalies of grid
point forecast and analysis. Prediction skill, measures how well the ensemble mean (EM, here it can be
either single model ensemble or MME) forecasts the observed (Reanalysis) value. When calculating multi‐
model ensemble mean, ensemble members from each model are weighted equally.

Potential predictability assesses howwell one model's EM, which is based onN− 1members, predict the one
member that is left out (e.g. Becker et al., 2014; Kumar et al., 2014). We first use each ensemble member as
the “left out”member to calculate the EMACC, then the average of the ACC of all members is considered as
potential predictability. The anomaly correlation coefficient at each grid point and each forecast lead day can
be written as,

ACC ¼
∑
y
∑
dy

ppEMano y; dy
� �

ppobsano y; dy
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
y
∑
dy

ppEMano y; dy
� �� �2∑

y
∑
dy

ppobsano y; dy
� �� �2r (4)

where ppEMano y; dy
� �

is the ensemble mean of model forecast anomalies, ppobsano y; dy
� �

is the anomalies in
Reanalysis. Assuming that the model simulates the correct physics of the real atmosphere, the potential pre-
dictability is an estimate of the upper bound of the prediction skill. As daily ECA is noisy, weekly (week 1,
week 2, week 3, week 4) or biweekly (e.g. week 3‐4) predictions are evaluated for the S2S models, while
monthly and seasonal predictions are evaluated for NMME models.
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To further evaluate S2S model predictions, we also apply the Heidke skill score (HSS), which is a common
performance metric used by the CPC to evaluate extended‐range probabilistic forecasts (Wilks, 2011). The
HSS is a useful tool to assess the proportion of categories that is forecast correctly. For EM of single model
or multi‐model ensembles, each forecast is assigned to one of two (above normal or below normal) or three
(top, middle, or bottom tercile) categories. The number of categories forecast correctly is designated as H.
The expected number of categories forecast correctly from a random forecast, E, is one‐third of the total
number of forecasts, T, for three‐category HSS, and is half of T for two‐category HSS. Then HSS can be
written as,

HSS ¼ H−E
T−E

(5)

The HSS ranges in value from ‐1 (completely wrong set of forecasts) to 1 (perfect forecasts) for two‐category
HSS, and from ‐0.5 (completely wrong set of forecasts) to 1 (perfect forecasts) for three‐category HSS. If HSS
equals zero, it can be considered as the expected HSS of a climatological forecast if we define the climatolo-
gical forecast as a random draw from two (or three) equiprobable forecast categories. Thus, if HSS values are
above zero, it indicates that the forecasts are skillful.

3. Monthly and Seasonal Predictions of ECA in NMME Models
3.1. Seasonal Prediction Skill

As discussed above, we examined hindcasts made with 4 NMME models, each with 10 ensemble members.
Overall, we do not find much difference in the prediction skill between individual model ensembles, with
the multi‐model ensemble mean (the average of all 40 members) exhibiting the highest anomaly correlation
with observed variability. Hence, we will focus on the multi‐model ensemble mean.

For lead zero (i.e., the hindcast for DJF pp using December 1 00Z initial conditions), the NMME hindcasts
exhibit an extended band of significant ACC in the subtropics and mid‐latitudes spreading from East Asia
across the Pacific, North America, and the Atlantic (Figure 2a). The highest skill appears to be over
Eastern Pacific and North America, with ACC reaching above 0.6 just off the west coast of North
America, and over 0.5 over much of the continental US, western Canada, and Alaska. For one‐month lead
(Figure 2b), the main area with high ACC lies over the central part of North America and Alaska, with scat-
tered regions of significant correlation over the Pacific and Atlantic. This pattern persists with leads of two
months and longer (not shown).

These hindcast skills for leads of one month or more is likely related to the impacts of ENSO. In Figure 2c,
the ACC between seasonal mean Nino‐3.4 index and pp from ERA‐Interim data is shown, showing strong
negative correlation over continental U.S. and Canada, and moderately positive correlation over eastern
Pacific and western Atlantic. Correlation between model predicted pp (zero‐lag) and observed Nino‐3.4
index is shown in Figure S17a, showing that the models can largely predict the ENSO related ECA variabil-
ity. In fact, one can construct a simple statistical model for predicting pp using just the leading empirical
orthogonal function (EOF) of equatorial Pacific SST (which is related to ENSO) as follows: The principal
component (PC) of the leading EOF of SST is regressed with seasonal pp anomaly at each grid point, while
leaving out data from a target season (leave‐one‐out‐cross‐validation). This model can then be used to hind‐
cast the left out season by projecting the model predicted seasonal SST anomaly onto the leading EOF pat-
tern. This projection coefficient is then multiplied by the regression coefficients to form the pp prediction.
The skill of this simple statistical model is shown in Figure 2d, showing that using the leading EOF of pre-
dicted tropical SST alone can explain most of the NMME predicted skill for lead of one month. This is con-
sistent with Yang et al. (2015) who showed that the leading predictable pattern of seasonal storm track
variability is that associated with ENSO.

3.2. Monthly Prediction Skill

For monthly hindcasts, the multi‐model ensemble mean displays significant ACC with observed pp variabil-
ity over nearly everywhere in the mid latitudes (Figure 3a), with highest correlation over northeastern Asia
and around the GreenwichMeridion. Over continental US and Canada, the ACC is mostly 0.4 or higher. For
one‐month lead (Figure 3b), the highest correlation is found over North America and its adjacent oceans,
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similar to lead‐1 seasonal hindcasts. Month‐to‐month correlation between pp and Nino‐3.4 is shown in
Figure 3c (see also Figure S17b for correlation between model predicted pp and Nino‐3.4), while the hind-
casts made by a simple leave‐one‐season‐out cross validation regression model based on the leading PC of
model hindcast monthly equatorial Pacific SST is shown in Figure 3d. It is clear that the one‐month lead
NMMEhindcasts are onlymarginally better than that given by this simple statistical model. Similar anomaly
correlation patterns but with slightly lower correlations for both NMME and SST regression are found for
longer leads (not shown), out to a lead time of 5 months (the longest‐lead hindcast cycle examined in this
study). Hence, Figure 2 and 3 together suggest that at least for the NMME models, the main source of pre-
dictability of storm track variability with leads of one month or longer is related to ENSO.

Figure 2. a) Prediction skill of seasonal (DJF) extratropical cyclone activity of NMME ensemble mean at lead zero. b) The
same as a) but for one month lead hindcast. c) Anomaly correlation between seasonal mean Nino 3.4 index and seasonal
mean extratropical cyclone activity in Reanalysis. d) Prediction skill of extratropical cyclone activity from a simple sta-
tistical model by using the leading EOF of equatorial SST (see main text for details). For 29 seasons, a correlation of 0.37 is
significant at the 95% level.
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Figure 3a suggests that during the first month, there is substantial storm track prediction skill that appears to
be not directly related to ENSO. The predictability in week 1‐2 (weather forecast time scale) and week 3‐4
(subseasonal time scale) both can contribute to the prediction skill in the first month. The subseasonal pre-
dictability of storm track variability will be the focus of the remainder of this study.

4. Sub‐seasonal Predictions of ECA in S2S Models
4.1. Temporal Evolution of Prediction Skill in MME

For subseasonal prediction, we first investigate the MME prediction skill of weekly (week 1 to 4) ECA
(Figure 4). Over most regions in the midlatitudes, the prediction skill in week 1 is above 0.6 and can reach
as high as 0.8. The prediction skill decreases from week 1 to week 4, with the ACC reaching only about
0.3 to 0.4 in regions where the prediction skill is highest in week 4. In regions over East Asia, central and

Figure 3. The same as Figure 2, but for monthly forecast. For 87 months, a correlation of 0.21 is significant at the 95%
level.
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eastern North Pacific, Bering Sea and Alaska, central parts of North America, Gulf of Mexico and North
Atlantic, as well as Scandinavia and Norwegian Sea, the MME has relatively high ACC scores compared
to other regions. As sub‐seasonal forecast is one of the main focuses of the study, we will mainly investigate
the week 3‐4 (following CPC week 3‐4 outlook and many other studies) performance of the S2S models.

4.2. Prediction Skill of Individual Models and MME in Weeks 3‐4

The prediction skill of individual models is shown in Figure 5a‐5f. CNRM, ECMWF and HMCR have better
prediction skill than CMA, CNR‐ISAC and ECCC (also see Figure S1 and Table S1). This does not necessarily
mean CMA, CNR‐ISAC and ECCC are worse than the other three models, as CMA, CNR‐ISAC and ECCC
only have 4 or 5 members while CNRM, ECMWF and HMCR have at least 10 members. Usually larger

Figure 4. a)‐d) Prediction skill (anomaly correlation coefficient, ACC) of multi‐model ensemble (MME, 49 ensemble
members) of extratropical cyclone activity for week 1 to 4 respectively. The region A (50.25°N‐60.75°N, 110.25°W‐78.75°
W) and region B (35.25°N‐48.75°N, 105.75°W‐89.25°W) are plotted in d). See section 5 for definition of region A and B. For
the 156 cases that are investigated here, a correlation of 0.16 is significant at 95% level. Note that the average interval
between each case is about a week. In addition, over most of the regions, autocorrelation with 1‐week lag of weekly ECA is
not significant at 95% level.
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ensemble size gives rise to higher prediction skill (e.g. Scaife et al., 2014; also see Figure S1). Though the EM
prediction skill of ECCC is worse than CNRM and HMCR, the prediction skill of one single member of
ECCC is very similar to CNRM and outperforms HMCR (Figure S1). Among the 6 models, ECMWF has
the best prediction skill. If we combine CMA, CNR‐ISAC and ECCC into a 13‐member MME (Figure 5i),
the skill is comparable to CNRM and HMCR. This shows that a larger ensemble size is beneficial to
improve prediction skill, and that combining different models may also be beneficial as it may cancel part
of the model biases. In all 6 models, the high prediction skill regions are consistent with the regions

Figure 5. a)‐f) Prediction skill (anomaly correlation coefficient, ACC) of week 3‐4 extratropical cyclone activity for CMA (4 members), CNR‐ISAC (5 members),
CNRM (15 members), ECCC (4 members), ECMWF (11 members) and HMCR (10 members) respectively. g) The same as a) but combining CMA, CNR‐ISAC,
CNRM, ECCC and HMCR into a 38‐member multi‐model ensemble (MME). h) The same as g) but combining all the 6 models into a 49‐member MME. i) The same
as g) but combining CMA, CNR‐ISAC and ECCC 13‐member multi‐model ensemble MME. For the 156 cases that are investigated here, a correlation of 0.22 is
significant at 95% level. Note the over most of the regions, autocorrelation with 2‐week lag of biweekly ECA is not significant at 95% level. As the average interval
between each case is about a week, the estimated degree of freedom is 78 (half of 156).
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discussed in section 4.1, which indicates that the dynamics giving rise to the prediction skill in different
models is similar.

Though ECMWF performs best among single models, combining the other 5 models into an MME
(Figure 5g) still outperforms ECMWF model overall, though ECMWF still has better skill over East Asia
and western Pacific. This suggest that though the other models do not have as good skill as ECMWF indivi-
dually, they still provide useful information for prediction. One potential reason why MME without
ECWMF has better skill is also due to that the MME without ECMWF has larger ensemble size (38) than
ECMWF (11). Another possible reason is that cancellation of individual model biases in MME may also
improve the prediction skill. When all the models are combined into a 49‐member MME, not surprisingly
it has the best skill (Figure 5h, Figure S1 and Table S1). In regions over East Asia, central and eastern
North Pacific, Bering Sea and Alaska, North America, Gulf of Mexico and North Atlantic, as well as
Scandinavia and Norwegian Sea, the prediction of week 3‐4 ECA can reach as high as 0.5. Potential sources
of predictability over these regions will be discussed in Section 5. As ECMWF and CNRM has the best pre-
diction skill and largest ensemble sizes among the 6models, these twomodels will be investigated in detail in
the following sections.

4.3. Week 3‐4 HSS

As an alternative way to evaluate the model performance in predicting ECA in week 3‐4, the HSS of
ECMWF, CNRM and MME are shown in Figure 6 (area average HSS north of 10N° is shown in Table S1).
The spatial structure of the HSS is very similar to the prediction skill of ECA (Figure 5e, 5c and 5h). The high
HSS regions are over central Pacific, Bering Sea and Alaska, central North America, Gulf of Mexico, and
some regions over Atlantic. Overall, the MME has higher HSS than ECMWF and CNRM, though in some

Figure 6. a) Heidke Skill Score (HSS) of ECMWFmodel for 2‐category forecast of extratropical cyclone activity. b) The same as a) but for CNRMmodel. c) The same
as a) but for multi‐model ensemble mean (MME). d)‐f) The same as a)‐c), but for 3‐category forecast.
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regions, individual model may outperform the MME. Again, this suggests that combining single models to
MME usually improves the model forecast. Overall, current dynamical models exhibit some skill in predict-
ing ECA in week 3‐4 over most mid latitude regions.

5. Discussions
5.1. Source of Subseasonal Prediction Skill
5.1.1. MJO
As discussed in section 1, the MJO has significant impact on ECA in sub‐seasonal time scale. In addition,
current dynamical models have skillful prediction of the MJO out to 3‐4 weeks (e.g. Kim et al., 2014; Kim
et al., 2018; Lim et al., 2018; Vitart, 2017; Xiang et al., 2015). If the model can capture both the MJO and
the MJO extratropical impact well enough, the MJO can be a source of predictability of ECA in week 3 to 4.

Here, following Zheng et al. (2018), we make MJO lag composites of ECA over regions A and B (see Figure 4
d) in ERA‐Interim, ECMWF and CNRM, with respect to the 8 MJO phases and 28 lag days. Region A is the
same (see Text S2) as region A in Zheng et al. (2018), where the signal‐to‐noise ratio of MJO impact on ECA
is largest. Region B is over an area where both ECMWF and CNRM have good prediction skill. As there are
only 156 cases when we combine the models into MME, if we separate these cases into 8 MJO phases, the lag
composites will be noisy as there are only a limited number of cases. Therefore, we use all the reforecasts
available from ECMWF (500 cases) and CNRM (252 cases) in DJF to make the model composites (forecast
day number 0 is then the day when the reforecast is initialized instead of Day0 for MME). In Reanalysis com-
posites, the MJO phase is defined as the phase at lag day 0, while in model (ECMWF and CNRM) compo-
sites, the MJO phase is defined as the phase at forecast day 0. As daily ECA is noisy, we perform a 7‐day
running mean on the ECA data prior to making MJO composites.

In region A, the MJO has significant impact on ECA in Reanalysis composites. The impact is significant in
week 3 (lag day 17 for week 3 as a 7‐day runningmean is performed) after phases 6 to 8 (Figure 7a or 7e). The
slope structure (e.g. significant impact in phase 8‐2 in week 1 and subsequent significant impact in phase 6‐8
in week 3) in Reanalysis composite is related to the propagation of the MJO. Both ECMWF (Figure 7c) and
CNRM (Figure 7g) are able to capture some features of the MJO impact. But in the ECMWF hindcasts, start-
ing from week 2, the amplitude of the MJO impact is weak compared to Reanalysis. In CNRM hindcasts,
though the amplitude of MJO impact is similar to Reanalysis, the strong signal is not in the correct phase
or lag (e.g. the negative signal is strong in phase 6 but weak in phase 8 during week 3‐4 in Reanalysis data,
but in CNRM hindcasts the negative signal is weak in phase 6 and strong over all the lags in phase 8). In both
ECMWF and CNRM hindcasts, the slope structures in MJO composite are “flatter” compared with that in
Reanalysis. Previous studies have shown that the propagation speed of the MJO has slow bias for these
two models (see Figure 1 in Lim et al., 2018). As shown in Zheng and Chang (2019), if the MJO propagates
slower or cannot propagate into specific phases, then the MJO extratropical impact will keep the same sign
for a longer time. This may be the reason why the MJO composites in the models have flatter slopes. Single
model member composites also show similar problems as ensemble mean composites (see Text S3).
Therefore, neither the ECMWF nor the CNRMmodel are able to fully capture the MJO impact on ECA over
region A, where in Reanalysis it is the region where the MJO impact is found to be most significant.

In region B, Zheng et al. (2018) found that the MJO does not have significant impact on ECA. Consistently,
the MJO composite is weak and there is almost no significant signal after week 3 in Reanalysis data
(Figure 7b). In the composites of ECMWF and CNRM model hindcasts (Figure 7d and 7h; single member
composite in Figure S4 and S5), the ECA signal in region B also do not show strong relationship with the
MJO phases. Thus, in region B, where the model has the highest prediction skill over North America (and
one of the regions where the prediction skill is highest over land), the high prediction skill is not directly
related to the MJO.
5.1.2. ENSO
Is the high prediction skill in week 3‐4 forecast coming from ENSO, which is similar with monthly and sea-
sonal forecast (section 3)? The absolute value of ACC between ERA‐Interim ECA during week 3‐4 in MME
cases and DJF average Nino 3.4 index anomaly (also known as Oceanic Nino index (ONI)) is shown in
Figure 8a. This can be regarded as using seasonal average Nino 3.4 index to hindcast week 3‐4 ECA in the
MME cases and can be directly compared with all the panels in Figure 4. Though using ONI index to
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hindcast the week 3‐4 ECA does not have as good skill as MME (Figure 5h), it is still comparable to single
model ensembles (Figure 5a‐5f). The important point to note is that the spatial pattern in Figure 8a is very
similar to the panels in Figure 5 over the Pacific, North America and the western Atlantic. Many of the
regions where dynamical models have high prediction skill (central Pacific, Alaska, central US, and
Atlantic) correspond to regions where the ACC is high by using ONI to hindcast. Thus at least part of the
prediction skill in these regions likely originates from ENSO.

Howwell do themodels capture this signal? Similar ACCmaps as Figure 8a but using individual members of
ECMWF and CNRM are produced (Figure S6 and S7). Most of the model members capture the correlation
between ONI and ECA, but the correlation is not as strong as that in Reanalysis, especially for ECMWF

Figure 7. a) Lag composite of extratropical cyclone activity anomaly over region A with respect to 8 MJO phases with and
lag day 0‐28 for ERA‐Interim in all ECMWF cases. A 7‐day running mean is performed on the extratropical cyclone
activity prior to making the composite. The dotted boxes are statistically significant at 95% from the results of a Monte
Carlo test (see Zheng et al., 2018 for details of the method). b) The same as a) but for region B. c) The same as a) but for
ECMWF model ensemble mean instead of ERA‐Interim. Lag day 0 is the initialization day for the ECMWF reforecast. d)
The same as c) but for region B. e)‐f) The same as a)‐b) but for all CNRM cases instead of ECMWF cases. g)‐h) The same as
c)‐d) but for CNRM model instead of ECMWF model.
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reforecasts. Model EM ECA also has similar correlation pattern with ONI (Figure S13). The correlation
between ECA over region B in week 3‐4 MME cases and ONI index are shown in Table 2. Region B is
where the models have relatively high prediction skill, and the correlation between ONI and ECA in
Reanalysis is near 0.4. Though the ensemble mean of both ECMWF and CNRM model have higher

correlation with ONI, however, only 1 of 11 ECMWF members and 2 of
15 CNRM members have higher correlation than the Reanalysis. As
most of the members have lower correlation than the Reanalysis, the
signal‐to‐noise ratio of ENSO‐related signal in model hindcasts is lower
than that in the Reanalysis in this region.
5.1.3. Polar Vortex
As discussed before, polar stratospheric anomalies can modulate ECA,
especially over the Atlantic. Here we explore whether storm track predict-
ability is related to the polar vortex. The absolute value of the ACC
between the PVI in weeks 2‐3 and ECA in weeks 3‐4 for MME cases in
ERA‐Interim is shown in Figure 8b. The correlation is relatively high over
the eastern North Atlantic, Scandinavia and Norwegian Sea, as well as
over East Asia. The spatial pattern is similar to the forecast skill
(Figure 5) from the Atlantic to the entire Eurasia, with similar amplitude
over the Atlantic. This suggests that the prediction skill in these regions
likely originates from the anomalies in the stratosphere. Similar correla-
tion can also be found in themodel hindcasts (Figure S14 and S15 for indi-
vidual members of ECMWF and CNRM, Figure S16 for model EM), and
the models also have good prediction skill of PVI in week 2‐3 (Table S2).
Note that for East Asia, though the correlation between PVI in week 2‐3
and ECA is not high, averaging PVI over a longer period (Figure S8; day
‐28 to day 14, which is four weeks before forecast initialization date to
week 2) increases the correlation over East Asia compared to Figure 8b,
while the correlation over the Atlantic decreases. This suggests that the
prediction skill over East Asia may be related to low frequency variability
of the polar vortex. Detailed study of the stratospheric impact on East Asia

Figure 8. a) Absolute value of anomaly correlation coefficient (ACC) between ERA‐Interim week 3‐4 extratropical
cyclone activity and winter season mean (December to February) Nino 3.4 index (also known as ONI index) in all
MME cases. b) Similar to a), but for ACC between ERA‐Interim week 3‐4 extratropical cyclone activity and week 2‐3 PVI
index. Similar to Figure 5, for the 156 cases that are investigated here, a correlation of 0.22 is significant at 95% level.

Table 2
The prediction skill over region B for ECMWF and CNRM model are
shown in the first line. The absolute value of anomaly correlation c
oefficient between ONI index and extratropical cyclone activity over region
B in ERA‐Interim, ensemble mean of ECMWF and CNRM model, as well
as individual ensemble member are shown in the lines below.
Individual members that have higher anomaly correlation between ONI
and extratropical cyclone activity than that in the Reanalysis are
highlighted.

ECMWF CNRM ERA‐Interim

Prediction Skill 0.568 0.470
ONI vs Reanalysis 0.396
ONI vs ensemble mean 0.614 0.644
ONI vs ensemble #1 0.261 0.292
ONI vs ensemble #2 0.330 0.391
ONI vs ensemble #3 0.208 0.263
ONI vs ensemble #4 0.310 0.369
ONI vs ensemble #5 0.269 0.292
ONI vs ensemble #6 0.330 0.275
ONI vs ensemble #7 0.329 0.432
ONI vs ensemble #8 0.414 0.355
ONI vs ensemble #9 0.292 0.418
ONI vs ensemble #10 0.270 0.335
ONI vs ensemble #11 0.331 0.269
ONI vs ensemble #12 0.322
ONI vs ensemble #13 0.169
ONI vs ensemble #14 0.382
ONI vs ensemble #15 0.385
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ECA is needed to fully explain the processes that give rise to the predictability.
5.1.4. QBO
The seasonal mean (DJF) zonal mean zonal wind at the equator at 30‐hPa (QBO index, following Hamilton,
1984, Marshall & Scaife, 2009, and many others) is obtained from NOAA ESRL website. We make use of the
index to examine the impact of the QBO on ECA on subseasonal time scale. Note the at least for the first few
weeks, models can capture the QBO well (see Table S3; Garfinkel et al., 2018; Lim et al., 2019). The ACC
between seasonal mean QBO and ECA in week 3‐4 for MME case in ERA‐Interim is not high (Figure S9).
Though Wang, Kim, and Chang (2018) showed that the QBO significantly modulates ECA over both the
Pacific and the Atlantic, here only relatively low correlation is found over the Atlantic and correlation over
the Pacific is even lower. One possible reason is that the QBO impact on the extratropical storm track found
byWang, Kim, and Chang (2018) is mostly in the upper troposphere, while we are focusing on the ECA near
the surface. This suggests that, at least in the 156 MME cases we analyzed, the QBO does not play an impor-
tant role in subseasonal prediction of surface ECA.

5.2. Potential Predictability in ECMWF and CNRM

The potential predictability of storm track activity of ECMWF and CNRM are investigated because of the
relatively high prediction skill of these two models. The potential predictability of CNRM (Figure 9b) over
most regions is higher than its prediction skill (Figure 9a), although in some regions (e.g. eastern Pacific,
northeast North America) the prediction skill is slightly higher than the potential predictability. This indi-
cates that there is potential to improve the model prediction skill to reach the potential predictability if
we assume the models are perfect forecast systems. However, the potential predictability of ECA in
ECMWF hindcasts (Figure 9e) is lower than its prediction skill over many regions (Figure 9d). This is coun-
terintuitive as it suggests that the ECMWF model is better at predicting the real atmosphere than its own
ensemble members.

Previous studies have found that when predicting the North Atlantic Oscillation (NAO), for some mod-
els the potential predictability is lower than the prediction skill (e.g. Eade et al., 2014; Scaife et al.,
2014). One proposed reason is that the signal‐to‐noise ratio is too low in the model. If the predictable
component in the model could be well correlated with the predictable component in the real world,
but the signal‐to‐noise (amplitude of predictable component versus model total variability) ratio is lower
in the model than in the real atmosphere, then the potential predictability can be lower than the pre-
diction skill as the low signal‐to‐noise ratio makes it harder for the model to predict its own
ensemble members.

We use the root mean square (RMS) of the EM anomaly σEM to estimate the predictable component. If we
have a large enough ensemble and a perfect model, the EM will be the same as the predictable component.
As discussed in Eade et al. (2014), using σEM to represent the predictable component is an overestimation,
since the amplitude of the EM will likely decrease if the ensemble size increases. The estimated signal‐to‐
noise ratio of the model, ηmodel, can be defined as ηmodel ¼ σEM

σmodel
, where σmodel is model variability (RMS of

model total anomaly). ηmodel of ECMWF and CNRM is shown in Figure 9f and 9c. As potential predictability
can be considered as the ratio between model predictable component amplitude and model variability
amplitude, ηmodel is expected to approach potential predictability when there is a very large ensemble.
Since σEM is an overestimation of the model predictable component, ηmodel can be considered as the upper
limit of potential predictability. The spatial structure of ηmodel (Figure 9f and Figure 9c) and potential pre-
dictability (Figure 9e and 9b) are very similar, which shows that ηmodel is a good indicator of model potential
predictability.

Though ηmodelmay only be slightly higher in CNRM (Figure 9c) than in ECMWF (Figure 9f), this may not be
a fair comparison as ηmodel depends on ensemble size (since σEM depends on ensemble sizes, see discussion
before). If we use the first 11 ensemble members in CNRM to calculate ηmodel (Figure S10c), it is clear that
ηmodel in CNRM is indeed higher than that in ECMWF model. This can explain why CNRM potential pre-
dictability is higher than ECMWF. As ηmodel is a good indicator of model potential predictability, this sug-
gests that the ECMWF potential predictability lower than prediction skill could be due to too small ηmodel,
or that the signal‐to‐noise ratio is too small. The small signal‐to‐noise ratio is consistent with our previous
discussions regarding the MJO and ENSO related signals found in the hindcasts, as individual ensemble
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member has lower correlation with ENSO index (Figure S6 and S7) then that for Reanalysis (Figure 8a; also
see Table 2). This low signal‐to‐noise problem is not limited to ECA but is also the case for Z500 (see Text S4
and Figure S11).

What causes the small signal‐to‐noise ratio in ECMWF? It can be due to too weak model predictable com-
ponent (too small signal) or too large model variability (too large noise). We first investigate whether
model variability σmodel is larger than Reanalysis variability σobs (RMS of Reanalysis anomaly). The ratio
between model variability and Reanalysis variability can be written as χnoise ¼ σmodel

σobs
. χnoise of ECMWF and

CNRM is shown in Figure 10a and 10b. Though over the ocean χnoise is around 1, over most regions over
land the ratio is above 1. CNRM has larger ratio than ECMWF. This means that both ECMWF and
CNRM has larger ECA variability (noise) than Reanalysis, and CNRM has larger variability than
ECMWF.

It is not easy to investigate whether the predictable component (signal) in the models is too weak compared
to Reanalysis, since the predictable component in Reanalysis is unknown. Here, following Eade et al. (2014),
we use “ratio of predictable components” (RPC) to evaluate the predictable signal in the model. RPC can be
written as,

RPC ¼ PCobs

PCmodel
≥

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ
EM2

�
σmodel2

q ¼ r
ηmodel

(6)

or,

Figure 9. a) The same as Figure 5c). b) Potential predictability of week 3‐4 extratropical cyclone activity for CNRMmodel. c) The estimated signal‐to‐noise ratio of
CNRM (ηmodel), which is the ratio between amplitude of ensemble mean (root mean square of ensemble mean of each cases) and model total variability (root mean
square of total model anomaly of each cases). d)‐f) The same as a)‐c) but for ECMWF model.

10.1029/2019JD031252Journal of Geophysical Research: Atmospheres

ZHENG ET AL. 12,072



RPC ¼ PCobs

PCmodel
≥
r σmodel

σEM
(7)

where PCobs is predictable component in Reanalysis, PCmodel is predictable component in the model, and r is
prediction skill (ACC) of the model. From equation (7), the predictable component in the Reanalysis is esti-
mated from the fraction of the variance that can be explained by model forecasts, diagnosed from the ACC
between Reanalysis and EM of model reforecast, as r2 reflects the proportion of the Reanalysis anomaly

Figure 10. a) Ratio between root means square of ECMWFmodel total anomaly and root mean square of ERA‐Interim total anomaly of extratropical cyclone activ-
ity. b) The same as a) but for CNRM model instead of ECMWF model. c) The RPC (equation (6) and (7)) value of ECMWF model. d) An alternative estimation
of the ratio between Reanalysis predictable component and ECMWF model predictable component (RPC’), see details in equation (8). Only regions where
ACC is above 0.22 (statistically significant at 95%) are shown in c) and d).
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accounted for by the model anomaly (also see Text S5). This is likely an underestimation of predictable com-
ponent, since larger ensembles or future improvements to the models can increase the correlations. The pre-
dictable component in the models is estimated by EM of the model. This is an overestimation since the
variance of the ensemble mean would be reduced if there is a larger ensemble. So, the right‐hand‐side of
equation (6) and (7) is the lower bound of RPC.

The right‐hand‐side of equation (6) can be estimated (Figure 10c) by the prediction skill (Figure 9d for
ECMWF) divided by ηmodel (Figure 9f for ECMWF). We will not consider regions where the ACC is low –

as the estimated predictable component in Reanalysis is proportional to ACC in our estimation, it is hard
to tell whether small amplitude of estimated predictable component in Reanalysis is due to small amplitude
of predictable component in reality or due to that the model is unable to fully capture the predictable com-
ponent. Thus, only regions where ACC is above 0.22 (which is statistically significant at 95%) are shown in
Figure 10c. In regions where the ACC is high in ECMWF (Pacific, East Asia, Alaska, Gulf of Mexico and
North America), the ACC could reach above 0.45. However, in most of these regions (except Gulf of
Mexico), ηmodel is smaller than 0.45. The RPC value is larger than 1 in these regions (see Figure 10c). Note
that our estimation is the lower bound of RPC, which means the actual RPC could be larger than 1 over more
regions. Therefore, over the regions where the prediction skill is high, ECMWF likely has smaller amplitude
of predictable component than that in Reanalysis.

The RPC value in Figure 10c is the lower bound of the ratio between predictable component in Reanalysis
and model. The following equation provides an alternative way to estimate the predictable component in
Reanalysis and in model:

RPC′ ¼ PCobs

PCmodel
≈

rσobs

rpotentialσmodel
; (8)

where rpotential is the potential predictability in the model (e.g. Figure 9e). In this equation, the amplitude of
the Reanalysis predictable component is estimated by the prediction skill multiplied by Reanalysis variabil-
ity, while the model predictable component is estimated by the model potential predictability times the
model variability. The value of this ratio for ECMWF is shown in Figure 10d. Over most of the regions where
the prediction skill is high, the predictable component in the Reanalysis is considerably larger than that in
ECMWF. This provides further support to our hypothesis that the signal is too weak in ECWMF forecasts,
and is likely one important reason why ECMWF potential predictability (Figure 9e) is lower than
ECMWF prediction skill (Figure 9d).

6. Conclusions

In this study, we have evaluated the prediction of ECA onmonthly to seasonal time scales using NMME and
on subseasonal time scales using S2S dataset. For monthly and seasonal forecast, the high prediction skill
lies in central part of North America and Alaska, with scattered regions of significant correlation over the
Pacific and Atlantic after one month lead. On subseasonal time scales, high prediction skill is found over
East Asia, central and eastern North Pacific, central part of North America, Gulf of Mexico and western
Caribbean Sea, central North Atlantic, as well as Scandinavia and Norwegian Sea. ECMWF model has the
best prediction skill among the 6 models we evaluated, though combining the other 5 models will lead to
higher prediction skill. The prediction skill highly depends on the ensemble size. Models with 5 ensemble
members or fewer do not show high prediction skill, but the ensemble which combines these models
together into a larger ensemble performs much better. The reason why the MME outperforms each indivi-
dual model is probably due to larger ensemble size, as well as cancelation of errors when combining different
models together. The prediction of ECA is also evaluated by using the HSS, which shows that ECMWF,
CNRM and MME have skill over most midlatitude regions.

The monthly and seasonal prediction skill mostly comes from ENSO after one month. For subseasonal pre-
diction, various predictability sources that may give rise to the predication skill are examined. Though the
MJO is found to have significant impact on ECA in subseasonal time scale, the benefit to the prediction skill
in the S2S model is limited, as prediction skill is relatively low in the regions where the MJO have high
impact. For ECMWF model, the MJO extratropical impact is too weak compared to Reanalysis. The
CNRM model cannot capture the extratropical impact in the correct phase and lag. There are various

10.1029/2019JD031252Journal of Geophysical Research: Atmospheres

ZHENG ET AL. 12,074



reasons why the models cannot capture the MJO extratropical response correctly. Most of the models have
too weak MJO amplitude (e.g. Lim et al., 2018; Vitart et al., 2017), which may lead to too weak extratropical
response. The propagation of the MJO, which may not be correctly captured by the models, highly modu-
lates the timing, sign and duration of the MJO extratropical response (Zheng & Chang, 2019). In addition,
biases of the midlatitude mean state in the models could be important in week 3‐4 prediction since they
can modify the extratropical response of the MJO in the midlatitudes (e.g. Henderson et al., 2017). For the
Pacific, North America and Atlantic, the prediction skill is highly related to ENSO on subseasonal time scale,
which is similar to that on seasonal time scale. These results are consistent with those of Johnson et al. (2014)
who showed that week 3‐4 surface temperature prediction skill over North America is largely due to ENSO
and the trend, with little contributions from the MJO. For regions over Atlantic to Eurasia, the prediction
skill is likely associated with stratospheric anomalies. A more detailed study of the prediction of ECA over
Eurasia, especial over East Asia, is needed to better explain how the stratosphere is contributing to the pre-
diction skill in these regions. The QBO shows only marginal contribution to the prediction skill mainly over
the Atlantic in the subseasonal time scale.

Potential predictability is a common way to estimate the upper limit of what we can predict if we assume the
model is a perfect forecast system. Here, we show that the potential predictability of ECA estimated from the
ECMWF hindcasts is lower than the prediction skill. The reason is that the signal‐to‐noise ratio (the predict-
able part versus total variability) is too small in ECMWFmodel. Further analyses suggest that the noise over
land areas is too large, and the amplitude of the predictable signals in the model may be too small. These
suggest the need to improve the model in order to improved prediction in the future.
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